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Abstract
Starting from the phenomenological lineshape, relativistic Gamow vectors are
defined. They span an irreducible representation ([j, sR]) of the causal Poincaré
semigroup. Their transformation properties are presented, from which follow
the exponential time evolution of the (relativistic) Gamow states (of spin
j and mass sR = (M − i�/2)2). The preparation and analysis of decay
data are complicated by the presence of a continuous background integral—
always omitted in the Weisskopf–Wigner approximation—in the complex basis
vector expansion for the in-state of a resonance scattering experiment. This
background integral, which is related to the background term in the scattering
amplitude, gives rise to deviations from the exponential time evolution. To
what extent a prepared state decays exponentially depends on the experiment
and not the resonance per se.

PACS numbers: 02.20.Mp, 02.30.Dk, 11.30.Cp, 11.55.Bq

1. Introduction

Resonances and decaying particles are characterized by two numbers, either by the resonance
mass MR (or resonance energy ER) and the Breit–Wigner width � or by the resonance mass
M and the decay rate (inverse of the lifetime 1/τ ). In non-relativistic quantum mechanics,
it is always assumed that � = 1/τ , though this is only based on the Weisskopf–Wigner
approximation. For relativistic resonances, opinions are more divided. Based on the
perturbation theoretical definition of the self-energy of the propagator [1], resonances and
decaying states are considered as complicated objects that cannot be described simply as an
exponentially decaying state or as a state characterized by two numbers such as (MR,�).

* To the memory of Lochlainn O’Raifeartaigh in gratitude and sorrow.
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For the sake of definiteness, we want to consider a particular example for which the
lineshape has been discussed in terms of the conventional field theoretical arguments. This is
the Z-boson resonance in the process

e− + e+ → Z→ f + f̄ (1.1)

where f f̄ is any of the lepton–antilepton or quark–antiquark pairs. This has been recently
measured with very high precision [2–5]. The jth partial wave amplitude in this resonance
formation process aj (s) is a function of the invariant mass square s = (

p
µ

1 + pµ2
)2 =(

Ecm1 +Ecm2

)2
, where pµ1 , p

µ

2 are the momenta of the two incoming (or outgoing) particles. If
there is one resonance in the jth partial wave then one writes the amplitude of this resonance
formation scattering process as

aj (s) = ares
j (s) + Bj (s). (1.2)

Here Bj (s) is a slowly varying background function and ares
j is to describe the contribution

of the resonance per se. In conventional quantum field theory, the amplitude contributing to
the resonance ares

j (s) is defined from the Z-boson propagator in the on-shell renormalization
scheme and given by a Breit–Wigner with energy-dependent width1:

ares
j (s) = aomj (s) =

−√s
√
�e(s)�f (s)

s−M2
Z + i
√

s�Z(s)
≈ −MZBeBf�Z

s−M2
Z + i s

MZ
�Z
= RZ

s−M2
Z + i s

MZ
�Z
. (1.3)

�Z(s) is called the energy-dependent width2 and as width one quotes in [2] �Z
(
s = M2

Z

)
.

When it was noticed that the on-shell mass and width definitions were gauge dependent [6–8]
and arbitrary [9], a definition of mass and width by the complex pole of the propagator was
proposed. It is not possible to fix the functions ares

j (s) andBj (s) separately from the empirical
data for |aj (s)|2 (besides the practical problems of determining aj (s) from the experimental
data), unless one has some theoretical arguments in favour of a particular functional form of
ares
j (s) (or of Bj (s)).

The definition of the resonance by a pole of the propagator3 at s = sR leads to a unique
function of s, which we call the relativistic Breit–Wigner,

aBW
j (s) = rZ

s− sR
= rZ

s− M̄2
Z + iM̄Z�̄Z

= rZ

s− (MR − i�R2
)2 . (1.4)

This Breit–Wigner still allows for many different definitions of the real parameters, mass and
width, of which (M̄Z, �̄Z), (MR,�R), (m1, �1) are the best known parametrizations of sR .
They are

1. (M̄Z, �̄Z) (also called (m2, �2)) [8] is defined as

sR = M̄2
Z − iM̄Z�̄Z. (1.5)

It is the peak position of the relativistic Breit–Wigner
∣∣aBW
j (s)

∣∣2.
2. (MR,�R) [6], which is suggested (but not dictated) by the analyticity of the S-matrix as

a function of the Mandelstam variable s, is defined as

sR =
(
MR − i

�R

2

)2

. (1.6)

1 See, e.g., section 35 of [2].
2 The energy-dependent width is given in terms of the self-energy �(s) by

√
s�Z(s) = − Im�(s)

1−Re�′(M2
Z
)
≈ s

MZ
�Z and

the partial width is �f (s) = Bf �(s) where Bf is the constant branching fraction into f f̄ .
3 Or equivalently by a pole of the S-matrix. See section 3 below.
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It is related to (M̄Z, �̄Z) by

M̄Z = MR

(
1− 1

4

(
�R

MR

)2
) 1

2

(1.7)

�̄Z = �R
(

1− 1

4

(
�R

MR

)2
)− 1

2

. (1.8)

3. (m1, �1) [8] which can be defined in terms of (M̄Z, �̄Z) by

m1 =
√
M̄2

Z + �̄2
Z (1.9)

�1 = m1

M̄Z

�̄Z (1.10)

and which was suggested because (m1, �1) came closest in value to the definition
(MZ,�Z) by (1.3). The association of the quasistable particle with the complex pole
of the S-matrix (1.4) does not specify any particular separation of the complex pole
position sR into mass and width.

From the lineshape data |aj (s)|2 for theZ-boson, one cannot distinguish between aBW
j (s)

and aomj (s) because one can shift the difference between them into the slowly varying function
Bj (s) of (1.2). Both (1.3) and (1.4) give equally good fits to the experimental lineshape data.
However, they produce different values for the masses. From the fit of aBW

j (s) one obtains
[3–5],

MR = 91.1626± 0.0031 GeV (1.11)

�R = 2.4934± 0.0024 GeV (1.12)

and from aomj (s)

MZ = 91.1871± 0.0021 GeV (1.13)

�Z = 2.4945± 0.0024 GeV. (1.14)

For mass values quoted with this accuracy, the difference between the on-shell mass
MZ and the pole masses MR and also M̄Z is significant: MZ −MR = 0.025 MeV = 10×
experimental error, �Z − �R ≈ 1.1 MeV. The values of (MZ,�Z) and (M̄Z, �̄Z), M̄Z =
MZ − 34.1 MeV, are quoted in the PDT [2], the values of (MR,�R) are not.

To summarize, there is no answer to the question, what is the right definition of the
mass and width of the Z-boson if one considers the lineshape only. Moreover, there
is not even a phenomenological means to discriminate between the lineshape formulae of
(1.3) and (1.4). The difference between them can be shifted to a non-resonant background
term B(s) of the scattering amplitude (1.2). For the ρ-meson resonance the experimental
data give a slight preference to the S-matrix pole definition (1.4) if one makes the
additional assumption that one and the same background function B(s) should work for all
channels [10].

Even after one has decided in favour of the relativistic Breit–Wigner (1.4) for the lineshape
of the resonance, the question of the definition of resonance mass and width of a relativistic
resonance is still completely open because one can parametrize the complex pole position sR in
many ways, of which (1.5), (1.6), (1.9) and (1.10) are the most popular. This question cannot
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be decided on the basis of the lineshape of a relativistic resonance alone. It is only possible
within the framework of a broader theory that includes the time evolution of a resonance
considered as a quasistationary state.

This will be the subject of the following section, where relativistic quasistationary states
will be introduced in analogy with Wigner’s theory for stable relativistic particles. To define
this state we shall use the empirical form for the resonance part of the jth partial wave amplitude
ares
j (s) given by the relativistic Breit–Wigner (1.4).

2. Semigroup representations of the Poincaré group for quasistable relativistic particles

Wigner’s unitary irreducible representations (UIR) of the Poincaré group P provide the
definition for relativistic stable particles [11]. They describe not only the free asymptotic
states but also the interacting states [12]. These UIR are characterized by two quantum
numbers: m2 and j which are interpreted as the quantum number spin (j) and mass squared
(m2) of the relativistic stable particle. For the representation spaces [j,m2] one uses the
basis vectors |[j,m2], b〉 where b denotes the additional quantum numbers, for which one has
various choices depending upon the complete set of commuting observables that one takes.
For Wigner’s canonical basis system the choice for b is the momentum and a component
of the spin {p, j3}. One could have as well chosen {p̂, j3} with p̂ = p/m being the spatial
components of the four-velocity p̂ [13]4. It does not make any difference for the UIR of P
whether one chooses for the degeneracy labels b the momentum p or the spatial component p̂
of the four-velocity. However, p̂ is the preferred choice for us here since we need to continue
the invariant mass squared s = pµpµ to complex values, when we analytically continue the
S-matrix to the resonance pole position sR . Complex mass will automatically lead to complex
momenta, but it will not lead to complex four-velocity p̂, since the Lorentz boost is a function
of p̂µ and not of momentum pµ.

A relativistic stable particle state characterized by m2 and j, f[j,m2], is the continuous
superposition of the basis vectors |[j,m2], b〉 with some measure µ:

f[j,m2] =
∫

dµ(b)|[j,m2], b〉f (b). (2.1)

In (2.1) the wavefunction of b, f (b), is a well-behaved (Schwartz) function of b, f (b) ∈ S(R3),
and the measure is chosen to be Lorentz invariant, either dµ(b) = d3p/2p0, or if one chooses
b = p̂, dµ(b) = d3p̂/2p̂0. The integration in (2.1) is understood to comprise summation over
all discrete degeneracy quantum numbers (e.g. j3) encapsulated in b.

In a scattering process of two incoming particles, 1 and 2, and two outgoing particles,
3 and 4 as in (1.1), the system of out-observable vectors ψ3 × ψ4 ≡ ψ−, can be expressed
in terms of out-state basis vectors, which span a two-particle irreducible representation of the
Poincaré group. From the direct product basis of the two-particle space, one obtains new
basis vectors using the Clebsch–Gordon coefficients of the Poincaré group5. These basis
vectors are labelled by the total invariant mass square s = (p3 + p4)

2 and the total angular
momentum j of the 3, 4 system and again by the degeneracy labels b and some other degeneracy
labels such as total orbital angular momentum and total spin which we shall suppress
here (they are irrelevant for the scattering of two spinless in- and out-particles). Thus the

4 See also footnote 6 of this paper and references therein concerning the use of four-velocity kets.
5 For the momentum basis vectors of the Poincaré group, these Clebsch–Gordon coefficients of the Poincaré group
were discussed and calculated long ago [14]. They are needed for the relativistic partial wave analysis. For the
velocity basis vectors, these Clebsch–Gordon coefficients have been derived in [13].
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interaction-incorporating out-states ψ− of a scattering experiment are continuous
superpositions of the out-plane wave solutions of the Lippmann–Schwinger equation which
we denote by |[j, s], b−〉. Here [j, s] denotes the irreducible representation of the Poincaré
transformations and for b we choose the four-velocity for the two-particle system, p̂ =
(p3 + p4)/

√
s, the third component of the total angular momentum j3 and possibly the discrete

degeneracy quantum numbers or species labels n. An out-observable vector with a fixed value
for s and j, ψ−[j,s], can thus be expanded in analogy with (2.1) in terms of |[j, s], p̂, j−3 〉 by the
Dirac basis vector expansion,

ψ−[j,s] =
∑
j3

∫
d3p̂

2p̂0 |[j, s], p̂, j−3 〉ψ(p̂, j3) (2.2)

where ψ(p̂, j3) is a smooth function of p̂, ψ(p̂) ∈ S(R3) as in (2.1). The general out-
observable vectorψ− = ψ3×ψ4 in the two-particle space is the continuous linear combination
of the ψ−[j,s] over all j and s

ψ− =
∑
j

∫ ∞
(m3+m4)

2
dsψ−[j,s]ψj (s) (2.3)

where ψj (s) are wavefunctions of the total energy s. The expansion (2.3) expresses the
reduction of the direct product of the representation [j3,m3] ⊗ [j4,m4] with respect to the
irreducible representations [j, s] of the Poincaré group [13, 14]. Similar expansions to
(2.2), (2.3) also hold for the in-state vector φ+ of the scattering experiment in terms of the
in-plane wave solutions of the Lippmann–Schwinger equation |[j, s], b−〉. The basis vectors∣∣[j,m2], p̂, j∓3

〉
are eigenvectors of the ‘exact generators’ of the Poincaré group. The exact

generators are those which include an interaction such as P0 ≡ H = H0 + V [12]. Of
these eigenvectors, one chooses the out(−) and in(+) plane wave solutions of the Lippmann–
Schwinger equation, respectively. The labels (−) and (+) indicate purely outgoing and
incoming boundary conditions, respectively.

In the heuristic formulation using the Lippmann–Schwinger equations [15], the precise
mathematical meaning of the out- and in-plane wave solutions is usually not stated [16]. It
is understood that they are to provide a means to distinguish between in-states φ+ prepared
in the past, and out-states ψ− registered by the detector in the future after they have passed
the interaction region. Such a distinction is meaningless in the Hilbert space where only time
symmetric solutions of the Schrödinger or Heisenberg equation—given by the unitary time
evolution group—are allowed. Thus there is a contradiction between the Hilbert space axiom
of quantum theory and the distinction between in- and out-states in scattering theory. Since
the solutions to the Lippmann–Schwinger equation are kets |E, j, η∓〉, they are not elements
of the Hilbert space, and one can choose them to be two solutions of the same eigenvalue
equation with two different, time asymmetric, boundary conditions. This is precisely what we
intend to do [19]. We replace the axiom of orthodox von Neumann quantum mechanics, which
asserts that the set of prepared in-states and the set of detected observables (or out-states) are
both equivalent to the Hilbert space

{set of prepared in-statesφ} = {set of prepared in-statesψ} = H (2.4)

by a new axiom.
This axiom states that the prepared states, defined by the preparation apparatus

(accelerator), are described by

{φ+} = �− ⊂ H ⊂ �×− (2.5)
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and the registered observables, defined by the registration apparatus (detector), are described
by

{ψ−} = �+ ⊂ H ⊂ �×+ (2.6)

where H in (2.5) and (2.6) denotes the same Hilbert space but �− and �+ are Hardy spaces
which are dense in H (see appendix (A.14), (A.15)). For the non-relativistic case this axiom is
a formulation of time asymmetric boundary conditions for the solutions of the time symmetric
Schrödinger and the Heisenberg differential equations, respectively. It is correct, as stated in
section 3.2 of [12], that in-states φ+ and out-states ψ− do not inhabit two different Hilbert
spaces. However, in contrast to what is implied in [12], the new hypothesis (2.5), (2.6)
postulates that the in- and out-kets, which are generalized eigenvectors and not in H, are
from two different spaces �×±, because (2.5), (2.6) postulate that the sets of in-states {φ+}
and out-states {ψ−} are different (dense) subspaces of the same Hilbert space H. These
two dense subspaces are Hardy spaces �− and �+, whose wavefunctions have different but
complementary analyticity properties. We shall make use of this analyticity property below,
when we analytically continue the S-matrix from the real axis to the complex pole position
of the resonance. We shall also make use of the Hardy space property for many other
derivations.

Since a resonance appears in one particular partial wave with a definite value of angular
momentum (and parity and other discrete quantum numbers which are all included in the
one label j ), we consider in the sum over all j in (2.3) only the angular momentum of the
resonance j = jR . This means we choose from the space of out-observable vectors ψ−

only the subspace with j = jR . In this subspace the discrete label j of the basis vectors
|[j, s], p̂, j−3 〉 has the fixed value jR (which we continue to denote by j for simplicity of
notation).

Every vector ψ−jR ≡ ψ−j ∈ �+ has the basis vector expansion

ψ−j =
∫

ds
∑
j3

∫
d3p̂

2p̂0 |[j, s], p̂, j−3 〉ψ−(s, p̂, j3) (2.7)

where the function ψ−(s, p̂) is by the new hypothesis (2.5), (2.6) Hardy functions of the
variable s, analytic in the upper half plane, ψ−(s, p̂) ∈ �+, cf appendix.

A similar basis vector expansion holds for the vector φ+ ∈ �−

φ+ =
∫

ds
∑
j3

∫
d3p̂

2p̂0 |[j, s], p̂, j−3 〉φ+(s, p̂, j3) (2.8)

where φ+(s) ∈ �− (analytic in the lower half complex s-plane). The Dirac basis vector
expansions (2.7), (2.8) can be proved as nuclear spectral resolution if the spaces �± are
nuclear spaces, which they are [18].

After these preparations, we now construct generalized vectors in terms of the Lippmann–
Schwinger kets. We call them relativistic Gamow vectors. The relativistic Gamow vector is
defined as the superposition of the Lippmann–Schwinger–Dirac kets |[j, s], p̂, j−3 〉 with the
‘exact relativistic Breit–Wigner’ (1.4) as the wavefunction (1.4):

|[j, sR], p̂, j−3 〉 =
i

2π

∫ +∞

−∞
ds|[j, s], p̂, j−3 〉

1

s− sR
. (2.9)

In contrast to the integration boundaries (m3 +m4)
2 � s < +∞ in the Dirac basis vector

expansion (2.7) for the vectorsψ−j ∈ �+, the integration in (2.9) extends from−∞ < s < +∞.
This means that the |[j, sR], p̂, j−3 〉 are generalized vectors, i.e. elements of the space �×+ .
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Applying the operator PµPµ to (2.9) and using the Titchmarsh theorem for Hardy
functions [19], one can show that the |[j, sR], p̂, j−3 〉 are generalized eigenvectors of the
total invariant mass square operator PµPµ,

(PµP
µ)×|[j, sR], p̂, j−3 〉 = sR |[j, sR], p̂, j−3 〉 (2.10)

(since the |[j, s], p̂, j−3 〉 under the integral of (2.9) are eigenvectors ofPµPµ with eigenvalue s).
They are also generalized eigenvectors of the full Hamiltonian, P 0 = H = H0 + V ,

H×|[j, sR], p̂ = 0, j−3 〉 =
√

sR |[j, sR], p̂ = 0, j−3 〉 (2.11)

and of the momentum operators P i ,

P×i |[j, sR], p̂, j−3 〉 =
√

sRp̂
i|[j, sR], p̂, j−3 〉. (2.12)

Thus one has an association between the ‘exact’ relativistic Breit–Wigner (1.4) and the
space of relativistic Gamow vectors (which are the superpositions of all the kets (2.9) with the
wavefunctions ψ(p̂)):

aBW
j (s) = r

s − sR

−∞ < s < +∞
⇐⇒

ψG[j,sR ] =
∑
j3

∫
d3p̂

2p̂0 |[j, sR], p̂, j−3 〉ψj3(p̂)

for all ψ(p̂) ∈ S(R3) −j � j3 � j.

(2.13)

The space of all vectors ψG[j,sR ], for all ψ(p̂) ∈ S(R3),−j � j3 � j , i.e. the space
spanned by the Gamow kets (2.9){

ψG[j,sR ]

} = �×+ ([j, sR]) (2.14)

is a representation space of an irreducible representation [j, sR] of the Poincaré semigroup P+.
Thus (2.13) associates with the relativistic Breit–Wigner, the irreducible representation space
of the Poincaré semigroup. This semigroup consists of all proper orthochronous Lorentz
transformations and of spacetime translations into the forward light cone

P+ = {(
, x)|
 ∈ SO(3, 1), det
 = +1,
0
0 � 1, x2 = t2 − x2 � 0, t � 0}. (2.15)

These causal (forward) Poincaré semigroup representations are characterized by

1. spin (parity) j given by the j th partial wave amplitude in which the resonance occurs

aj (s) = aBW
j (s) + Bj (s). (2.16)

2. the complex mass squared sR (with Im sR < 0) given by the pole position of aBW
j (s)

of (1.4).
3. ‘minimally complex momentum’, p = √sRp̂ where p̂ is real.

The restriction to representations of the Poincaré transformations with ‘minimally
complex’ momentum is necessary, because we need to assure that the four-velocity p̂ is real,
since the boost (rotation-free Lorentz transformation from rest to the four-velocity p̂or to three-
velocity v = p̂/γ, γ = 1/

√
1− v2) is a function of the real parameter p̂. The third condition

then assures that the restriction of the representation [j, sR] to the homogeneous Lorentz
subgroup is the same unitary representation as occurs in Wigner’s unitary representation for
stable particles [j,m2].

The representation of the semigroup (2.15) and the action of the operator U×(
, x) in
the space �×+ ([j, sR]) can only be appreciated in comparison with the unitary representation
operator U †(
, x) of the Poincaré group

P =
{
(
, x)|
 ∈ SO(3, 1), det
 = +1,
0

0 � 1
}
. (2.17)
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For the unitary operator U †
[j,m2](
, x) = U †(
, x) = U((
, x)−1) = U(
−1,−
−1x) in the

irreducible representation space H(j,m2), the action of the operators on the momentum basis
vectors is written as [13]

U †(
, x)|p̂, j3〉 = e−ip·x∑
j ′3

D
j

j3j
′
3
(W(
−1, p̂))|
−1p̂, j ′3〉 −∞ < t <∞ (2.18)

where e−ipx = e−iγm(t−v · x) and W(
−1, p̂) = L−1(
−1p̂)
−1L(p̂) is the Wigner rotation
and L(p̂) is the boost

Lµν(p̂) =

 p0

m
−pn

m

pm

m
δmn −

pm

m

pn
m

1+ p0

m


 (2.19)

which has the property

L−1(p̂)µνp
ν =



m

0
0
0


 . (2.20)

The boost L(p̂) and therewith W(
, p̂) depends upon p̂ and not upon the momentum
p = √sp̂. It is this property that allows us to construct the minimally complex representations
[j, sR] by analytic continuation of the Lippmann–Schwinger kets with real energy s to the
Gamow kets with complex energy sR

|[j, s], p̂, j−3 〉 → |[j, sR], p̂, j−3 〉. (2.21)

We perform this analytic continuation to complex values of s in such a way that p̂ remains
unaffected; p̂ = real. The momenta then become ‘minimally’ complex, meaning that the
momentum p is given as the product of the complex invariant mass

√
s with the real four-

velocity vector p̂ (p̂µp̂
µ = 1), p = √sp̂. Since the velocity basis vectors differ from

the momentum eigenvectors by a trivial normalization factor N(m) which depends upon the
measure dµ(p̂) = d3p/2p0 (or equivalently upon the δ-normalization)

|[j,m2], p̂, j3〉 = N(m)|[j,m2],p, j3〉 ∈ �× ⊃ H(m2, j) (2.22)

one can substitute in the transformation formulae [j,m2], the four-velocity kets (2.22) for the
momentum kets as already done in (2.18).

However, the usual non-rigorous notation (2.18) is not correct for either basis vectors
since these kets are not in Hilbert space. In order to make (2.18) mathematically rigorous we
have to replace theU † which acts in H(m2, j), by its unique extensionU×(
, x) ⊃ U †(
, x)
in �× ⊃ H(m2, j).

If� is the space of differentiable vectors of H(m2, j) endowed with a topology defined by
the Nelson operator [20, 21], thenU×(
, x) is also a representation of the Poincaré group [21].
The same would hold for the reducible representations if the functions ψj (s) in (2.3) were
Schwartz space functions. If, however, the ψj (s) are Hardy functions and the basis vectors
are the Lippmann–Schwinger scattering states defined as functionals |[j, s], p̂, j−3 〉 ∈ �×+ ,
then their transformation properties are the same as for the |[j, s], p̂, j3〉 ∈ �× except that the
U×+ (
, x) ∈ �×+ are only defined for the semigroup6 P+. The transformation property of the
Lippmann–Schwinger kets under the transformations (
, x) ∈ P+ is given in [22]

U×(
, x)|[j, s], p̂, j−3 〉 = e−ip·x∑
j ′3

D
j

j ′3j3
(W(
−1, p̂))|[j, s],
−1p̂, j ′−3 〉

only for x2 � 0 and t � 0. (2.23)
6 The reason for this is the (small and usually not mentioned) negative imaginary part of s(p0),

√
s = √s0 − iε for

the Lippmann–Schwinger kets.
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The transformation of the Gamow kets |[j, sR], p̂, j−3 〉 under (
, x) ∈ P+ is very similar
to (2.23) and given by [23]

U×(
, x)|[j, sR], p̂, j−3 〉 = e−iγ
√

sR(t−x · v)
∑
j ′3

D
j

j ′3j3
(W(
−1, p̂))|[j, sR],
−1p̂, j ′−3 〉

only for x2 � 0 and t � 0 (2.24)

where v is the three-velocity, and p̂ = γ v, where γ = 1/
√

1− v2 =
√

1 + p̂2 = p̂0.
For a spacetime translation of the out-observable, |ψ−η 〉〈ψ−η | (described by anyψ−η ∈ �+)

relative to the decaying state (described by the Gamow state |[sR, j ], p̂, j−3 〉) we obtain the
Born probability amplitude from (2.24)

〈U(I, x)ψ−η |[sR, j ], p̂, j−3 〉 = 〈ψ−η |U×(I, x)|[sR, j ], p̂, j−3 〉
= 〈ψ−η |e−ixµP×µ |[sR, j ], p̂, j−3 〉
= 〈ψ−η |e−i[H×t−x · P×]|[sR, j ], p̂, j−3 〉
= e−iγ

√
sR(t−x · v)〈ψ−η |[sR, j ], p̂, j−3 〉

= e−
�R

2 γ (t−x · v)e−iγMR(t−x · v)〈ψ−η |[sR, j ], p̂, j−3 〉
for x2 � 0 t � 0 only. (2.25)

The absolute value square of (2.25) is the Born probability (density) to find the decay products
η in the spacetime-translated Gamow state ψGsR (x) = e−ixµP×µ |[sR, j ], p̂, j−3 〉. We have thus
obtained for the decay rate the exponential decay law with time dilation if the relative velocity v
of the detector and the decaying state are different from zero. A detailed discussion of how
one measures this will be given in [22]. Here we want to consider the special case of the time
evolution in the rest frame of the decaying state, v = 0, for which we obtain from (2.25)∣∣ψGsR (t)−〉 ≡ e−iH×t |[j, sR], p̂ = 0, j−3 〉 = e−i

√
sRt |[j, sR], p̂ = 0, j−3 〉

= e−iMRt e−�Rt/2|[j, sR], p̂ = 0, j−3 〉 for t � 0 only. (2.26)

We now apply (2.26) to the quasistationary state of the Z-boson created in the formation
process (1.1). We chooseψG[j,sR ] = |Z〉, using the parametrization sR =

(
MR−i�R2

)2
from (1.6)

and we choose for the out-observable (i.e. the vectors representing the decay products of the
resonance) |ψ−η 〉 = |f f̄ 〉. From (2.26) we then obtain that the probability rate for transitions
of the relativistic Gamow state into any decay product η decreases by the exponential law:∣∣〈ψ−η ψG[j,sR ](t)

−〉∣∣2 = e−�Rt
∣∣〈ψ−η [j, sR], p̂ = 0, j−3

〉∣∣2 (2.27)

with �R defined as the width of the Breit–Wigner energy wavefunction �R = −2 Im
√

sR
in (2.9).

Initially and without the transformation property (2.25), (2.26) of the Poincaré semigroup
representation for the Gamow vector (2.9), the width�R had nothing to do with time evolution.
It was just the width (one of many (1.5), (1.6), . . .) of the resonance scattering amplitude (1.4)
which was used as the energy distribution of the Gamow vector (2.9).

From the transformation formula (2.24) and therewith the exponential time evolution
(2.27), it follows that the lifetime of the quasistable particle represented by the relativistic
Gamow vector (2.9), is given by τ = h̄/�R with width �R = −2 Im

√
sR . Only this width

�R , and not any of the other possible widths, �Z, �̄Z , etc has this property. For the Gamow
state with width �R we have thus predicted by (2.27) that the probability rate for any decay
products η fulfils the exponential law with the lifetime (in the rest frame) of the relativistic
resonance given as

τR = h̄/�R. (2.28)
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In addition the Gamow vector predicts time asymmetry and distinguishes a time direction
which is not possible with unitary representations of the Poincaré group in the Hilbert space.
The restriction t � t0 ≡ 0 correctly describes the physical situation because the decay
productsη, described by ψ−η , can be detected only after the decaying state R, described by the
Gamow vector ψ[j,sR ](t), has been created at t = t0 ≡ 0.

Returning to the practical problem of the resonance mass and width of the Z-boson
mentioned in section 1, we conclude from (2.25)–(2.27) that if (2.28) is to hold for relativistic
resonances, then the width of the Z-boson must be given by the parametrization (1.6) for the
lineshape (1.4). The real resonance mass is then theMR in the exponential of the phase factor
of (2.26), i.e. MR = Re

√
sR and not the peak position M̄Z = MR

√
1− 1/4(�R/MR)2 of

the relativistic Breit–Wigner or any other parametrization of the lineshape used and reported
in the review of particle properties [2]. Determining the values �R,MR from a fit of (1.4)
to the experimental lineshape data one obtains the experimental value of the Z-boson mass
as [3]

MR = Re
√

sR = 91.1626± 0.0031 GeV. (2.29)

From the exponential time evolution derived for the relativistic Gamow vector it follows
that the ‘width’ of the relativistic Breit–Wigner �R (not �̄Z, �Z or any other �) is the inverse
lifetime τR = h̄/�R . From the semigroup character of the representation [j, sR] follows the
time asymmetry (microphysical irreversibility).

3. The exponentially evolving Gamow vector from each S-matrix pole

The definition of a resonance in section 2 by an irreducible representation [j, sR =
(MR − i�R/2)2] of the Poincaré semigroup was empirically suggested by the experimental
lineshape of a relativistic resonance (in particular the Z-boson lineshape in section 2, and also
by other relativistic resonances [10]) and theoretically supported by the perturbation theoretical
treatment in various renormalization schemes [6–9]. The field theoretical arguments, using
gauge independence for the renormalization scheme, favoured the relativistic Breit–Wigner
amplitude aBW

j (s) of (1.4) as the partial wave amplitude for the resonance per se. This
relativistic Breit–Wigner amplitude was then used to define a relativistic Gamow vector in
terms of the out-plane wave solutions of the Lippmann–Schwinger equation by a formula
(2.9) which is essentially the Titchmarsh theorem for Hardy functions (when taken at
ψ− ∈ �+).

The most widely accepted definition of resonances in non-relativistic as well as relativistic
physics, is the definition as a first-order pole in the second (or higher) sheet of the analytically
continued S-matrix at pole positions s = sRi in the lower half plane. We shall use this definition
to establish a correspondence between a relativistic Breit–Wigner for each S-matrix pole sRi
and an irreducible representation space [j, sRi ] for Gamow vectors. This will associate with
the background amplitude, Bj (s) in (1.2), a background vector φbg whose time evolution is
non-exponential.

We shall now derive the relativistic Gamow vector from the resonance pole of the
relativistic S-matrix at s = sR . A relativistic resonance defined by a second sheet pole
of the S-matrix at the complex value s = sR is thus characterized by two real parameters
which we choose to call Re (

√
sR) ≡ MR and Im

√
sR ≡ −�R/2 as in (1.6). The reason for

this choice is relation (2.28).
We start with the S-matrix element between a prepared in-state φ+ and a detected out-

observable ψ−. We assume the asymmetric boundary conditions φ+ ∈ Φ− and ψ− ∈ Φ+ of



Relativistic resonances, semigroup representation of Poincaré transformations 8489

the new hypothesis (2.5), (2.6)

(ψout, φout) = (ψout, Sφin) = (�−ψout,�+φin) = (ψ−, φ+)

=
∑
j,j3,n

∫
d3p̂

2Ê
ds

∑
j ′,j ′3,n′

d3p̂′

2Ê′
ds′〈ψ−|[s, j ], n, j3, p̂−〉

×〈p̂, j3, [s, j ], n|S|[j ′, s′], j ′3, p̂′, n′〉〈+j ′3, p̂′, [j ′, s′], n′|φ+〉. (3.1)

In this S-matrix element, φin describes the asymptotically-free in-state that is prepared, e.g.
by the accelerator, outside the interaction region. This φin becomes the φ+ in the interaction
region (of the two beams in e+e− → Z → f̄ f ), the energy distribution in the beams is
described by the wavefunctions φin(s) = φ+(s). The out-state vector ψout describes the
detected out-particles (e.g., a particular f̄ f ) when they are asymptotically free. It comes from
the ψ− in the interaction region and its wavefunction ψout(s) = ψ−(s) describes the energy
resolution of the detectors. ψ− is defined by the registration apparatus (detector)—for which
reason |ψ−〉〈ψ−| should be called observable rather than out-state. The kets |[j, s], b∓〉 are
the generalized eigenvectors of the exact energy operator PµPµ as stated in equation (2.10).

The kets |[j, s], b〉 are the corresponding eigenvectors of the asymptotically-free energy
operator and

ψout(s) ≡ 〈b, [j, s]|ψout〉 = 〈−b, [j, s]|ψ−〉 ≡ ψ−(s) (3.2)

φin(s) ≡ 〈b, [j, s]|φin〉 = 〈+b, [j, s]|φ+〉 ≡ φ+(s). (3.3)

In addition to the property that |ψout(s)|2 = |ψ−(s)|2 and |φin(s)|2 = |φ+(s)|2 be a smooth
function of s (since they describe the apparatus resolution), we also require according to our
new hypothesis (2.5), (2.6) that these functions have certain analyticity properties; precisely
they are Hardy functions7. In expressing the matrix element (ψ−, φ+) by the rhs of (3.1), we
have used for ψ− and φ+ the basis vector expansions (2.7) and (2.8). We explicitly included
the additional quantum number n (e.g. channel or species label) in (3.1). For the Lorentz
invariant integration we choose dµ(b) = d3p̂/(2p̂0). And we have written the S-matrix as

〈−p̂, j3, [s, j ], n|p̂′, j ′3, [s′, j ′], n′+〉 = (�−|p̂, j3, [s, j ], n〉,�+|p̂′, j ′3, [s′, j ′], n′〉)
= 〈p̂, j3, [s, j ], n|�−†�+|p̂′, j ′3, [s′, j ′], n′〉
= 〈p̂, j3, [s, j ], n|S|p̂′, j ′3, [s′, j ′], n′〉. (3.4)

This enormous S-matrix can be considerably reduced using symmetry properties. From
the invariance of the S-operator with respect to Poincaré transformations one can show that
the S-matrix element (3.4) can be written as

〈p̂, j3, [s, j ], n|S|p̂′, j ′3, [s′, j ′], n′〉 = 2Ê(p̂)δ3(p̂ − p̂′)δ(s− s′)δj3j
′
3
δjj ′ 〈n‖Sj (s)‖n′〉 (3.5)

where 〈n‖Sj (s)‖n′〉 is the reduced S-matrix element which depends upon j which labels the
partial wave, and the particle species and channel quantum numbers n, n′. For a fixed initial
state n′ it is written in terms of the scattering amplitudes used in section 1:

〈n‖Sj (s)‖n′〉 = S(n)j (s) =
{

2iaj(s) + 1 for elastic scattering n = n′
2ia(n)j (s) for reaction from n′ into the channel n.

(3.6)

7 This is related to causality based on the fact that the in-state φ+ must be prepared first before the out-observable
ψ− can be detected in it [23]. The S-matrix element |(ψ−, φ+)|2 describes the probability of detecting the observable
ψ− in the state φ+ (Born probability). This is also expressed by the asymptotically-free quantities |(ψout, φout)|2,
where φout = Sφin is a state (not an observable such as ψout) which is defined by the preparation apparatus as a φin

and the dynamics described by the S-operator (or by the Hamiltonian H if S is calculated in terms of H = H0 + V ).
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Here aj (s) is the partial wave amplitude of (1.2) for f f̄ = e−e+ and a(n)j (s) are the partial
wave amplitudes used in (1.2) for e+e− → Z → µµ̄, etc. We insert (3.5) and (3.6) into (3.1)
and obtain for the S-matrix element (suppressing the additional quantum numbers n again)

(ψ−, φ+) =
∑
j

∫ ∞
m2

0

ds
∑
j3

∫
d3p̂

2Ê
〈ψ−|[j, s], j3, p̂−〉Sj (s)〈+j3, p̂, [j, s]|φ+〉. (3.7)

After we use the Poincaré invariance of the S-matrix using the three-velocity basis
vectors |[j, s], b∓〉 = |[j, s], j3, p̂∓〉 we again ignore the degeneracy quantum numbers b
and we consider only the j th partial S-matrix element (where j is the spin-parity of the
resonance we want to consider). With this simplified notation |[j, s]j3, p̂∓〉 ≡ |s∓〉 we write
the j th term in (3.7) as

(ψ−, φ+)j =
∫ ∞
m2

0

ds〈ψ−|s−〉Sj (s)〈+s|φ+〉 (3.8)

where the energy wavefunctions (3.2) and (3.3) are according to the new hypothesis (2.5),
(2.6) of Hardy functions8 which were suggested by the Lippmann–Schwinger equation,

ψ−(s) = 〈−s|ψ−〉 = 〈−b, [j, s]|ψ−〉 ∈ H2
+ ∩ S|Rm0

(3.9)

φ+(s) = 〈+s|φ+〉 = 〈+b, [j, s]|φ+〉 ∈ H2
− ∩ S|Rm0

(3.10)

φ+ describes the prepared in-state (e+e−) and |φ+(s)|2 = |φin(s)|2 describes the energy
distribution of the beam. ψ− describes the observed out-observable (e+e−, µµ̄, τ τ̄ , . . .)
which is registered by the detector, and |ψ−(s)|2 = |ψout(s)|2 describes the detector efficiency.
Therefore they should be smooth, rapidly decreasing functions.

All of our following results will be a consequence of the new hypothesis of (2.5), (2.6)
or its realization in terms of energy wavefunctions given in (3.9), (3.10). Except for this new
hypothesis, all other assumptions which we shall use are the standard axioms of quantum
theory and relativistic invariance.

Since we describe the interaction in terms of the S-operator, the dynamics is encapsulated
in the property of the S-matrix, Sj (s), as a function of the scattering energy squared s. We
shall use for Sj (s) the standard assumption of polynomial boundedness and analyticity. Since
we are interested in the resonances we also make the usual first-order pole assumption [29].

In order to be as simple as possible we shall consider the specific model that there are
N = 2 resonances in the j th partial wave, each described by a first-order pole at the position
s = sR1 and s = sR2 in the second sheet. As a consequence of this and the hypothesis (3.9),
(3.10), the integrand in (3.8) is analytic in the lower half plane of the second sheet except for
the two poles at s = sRi . This is depicted in figure 1(a) which also shows the cut along the real
axis from m2

0 � s < ∞. We can deform the contour of integration in (3.8) from the positive
real line on the first sheet through the cut into the lower half plane of the second sheet where
the integral over the infinite semicircle has been omitted since it is zero as a consequence of
(3.9), (3.10) and the boundedness property of Sj (s). The result of this contour deformation is
shown in figure 1(b) where the infinite semicircle in the complex plane has been omitted. The
rhs of (3.8) becomes

(ψ−, φ+) =
∫ −∞II

m2
0

ds〈ψ−|s−〉SII (s)〈+s|φ+〉 +
∮
C1

ds〈ψ−|s−〉SII (s)〈+s|φ+〉

+
∮
C2

ds〈ψ−|s−〉SII (s)〈+s|φ+〉. (3.11)

8 The function spaces H± ∩ S|Rm0
are realizations of the abstract Hardy spaces �±; in this way (3.9), (3.10) are

equivalent to (2.5), (2.6). See also the appendix on rigged Hilbert spaces at the end of this paper.



Relativistic resonances, semigroup representation of Poincaré transformations 8491

(a) (b)

Figure 1. The two sheeted S-matrix. The j th partial S-matrix Sj (E) is an analytic function on a
Riemann energy surface cut along the positive real axis from m2

0 � s <∞ indicated in (a). The
integration in (3.8) is along the cut in (a), either on the lower edge of the ‘physical sheet’ or along
the upper edge of the second sheet. The contour of integration can be deformed into the lower
half plane of the second sheet, and ultimately into the contours around the two resonance poles
indicated by× and into an integral fromm2

0 to−∞ along the upper edge of the second sheet. This
is shown in (b); the arrows indicate the direction of integration. Thus we have the equality of the
integrals in (3.8) and (3.11).

Here Ci is the circle around the pole at sRi , and the first integral extends along the negative
real axis in the second sheet (indicated by −∞II ). The first term has nothing to do with any
of the resonances, it is the non-resonant background term,∫ −∞II

m2
0

ds〈ψ−|s−〉SII (s)〈+s|φ+〉 ≡ 〈ψ−|φbg〉 (3.12)

which we express as the matrix element of ψ− with a generalized vector φbg that is defined
by it

φbg ≡
∫ −∞
m2

0

ds|s−〉〈+s|φ+〉SII (s). (3.13)

It will be discussed further in section 4.
We now consider each integral along Ci around each pole at sRi separately. For each

integral we use the expansion around the pole sRi separately

S(s) = R(i)

s− sRi
+ R0 + R1

(
s− sRi

)
+ · · · . (3.14)

For each of the two (or N ) integrals separately we evaluate the integrals around each pole sRi .
Then we obtain for each of these pole terms the following results:

(ψ−, φ+)pole termi =
∮
←↩Ci

ds〈ψ−|s−〉S(s)〈+s|φ+〉 (3.15)

=
∮
←↩Ci

ds〈ψ−|s−〉 R(i)

s− sRi
〈+s|φ+〉 (3.16)

= −2π iR(i)
〈
ψ−
∣∣ s−Ri

〉 〈
+sRi

∣∣φ+
〉

(3.17)

=
∫ ∞
−∞II

ds〈ψ−|s−〉〈+s|φ+〉 R(i)

s− sRi
. (3.18)
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To get from (3.15) to (3.16) we used (3.20). To get from (3.16) to (3.17), the Cauchy theorem
has been applied; to get from (3.16) to (3.18), the contour Ci of each integral separately
has been deformed into the integral along the real axis from −∞II < s < +∞ (and an
integral along the infinite semicircle, which vanishes because of the Hardy class property).
The equality between (3.17) and (3.18) is also called the Titchmarsh theorem for Hardy class
functions. The integral (3.18) extends from s = −∞II in the second sheet along the real axis
to s = 0 and then from s = 0 to s = +∞ in either sheet. (It does not matter whether we take
the second part of the integral over the physical values of s,m2

0 � s <∞, immediately below
the real axis in the second sheet or in the first sheet immediately above the real axis). The
major contribution to the integral comes from the physical values m2

0 � s < ∞, if sRi is not
too far from the real axis.

The integral in (3.18) contains the Breit–Wigner amplitude

a
BWi

j = R(i)

s− sRi
but with −∞II < s < +∞ i = 1, 2, . . . , N. (3.19)

Unlike the conventional Breit–Wigner for which s is taken (if one worries about these
mathematical details) over m2

0 � s < +∞, the Breit–Wigner (3.19) is an idealized or exact
Breit–Wigner whose domain extends to −∞II in the second (unphysical) sheet.

By (3.18) we have associated each resonance at sRi with an exact Breit–Wigner (3.19)
which we obtain by omitting the integral over the arbitrary function 〈−s|ψ−〉〈+s|φ+〉 ∈ �−
from (3.18). By (3.17) we have associated each resonance at sRi with vectors

∣∣s−Ri 〉 =∣∣[j, sRi
]
, b−

〉
which we call Gamow vectors.

We obtain a representation of the Gamow vectors by using the equality between (3.17)
and (3.18) and omitting the arbitrary ψ− ∈ �+ (which represents the decay products defined
by the detector). For this defining relation of the relativistic Gamow vectors we shall use the
notation that includes the degeneracy quantum numbers b. Thus, considered as a functional
equation in �×+ , we obtain

∣∣[j, sRi
]
, b−

〉 = i

2π

∫ ∞
−∞

ds|[j, s], b−〉 1

s − sRi

〈+s|φ+〉〈+
sRi
∣∣φ+

〉
= i

2π

∫ ∞
−∞

ds|[j, s], b−〉 1

s − sRi
i = 1, 2, . . . , N. (3.20)

This is the same formula by which we defined the relativistic Gamow kets in (2.9) in terms
of a relativistic Breit–Wigner wavefunction. Here we derived it from the S-matrix pole. The
Gamow kets (3.20) are a superposition of the exact—not asymptotically free9—‘out states’
|[j, s], b−〉.

The degeneracy quantum numbers b of the Gamow kets
∣∣[j, sRi

]
, b−

〉
are the same as

those chosen for the Dirac–Lippmann–Schwinger kets |[j, s], b−〉. However, whereas for the
Dirac–Lippmann–Schwinger kets one can choose for b = b1, . . . , bn the eigenvectors of any
complete set of observables, one does not have the same freedom for the b in the Gamow kets,
since in the contour deformations that one uses to get from (3.8) to (3.11) and ultimately to
(3.15)–(3.18) one makes an analytic continuation in the variable s to complex values. If one
chooses for b quantum numbers that also change when s is analytically continued, b could not
be kept at one and the same value during this analytic continuation and the Gamow vector on the
lhs of (3.20) would be a complicated (continuous) superposition (integral) over different values
of b and not just a superposition over different values of s. For this reason, the momentum
p is not a good choice for the quantum numbers b, because the momentum will also become

9 That it is important not to use asymptotically-free states for resonances has also been emphasized by Sirlin [24].
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complex if the energy in the centre of mass rest frame becomes complex. This is also the
reason why we choose the space components of the four-velocity p̂ = p/

√
s as the additional

quantum numbers in definition (2.9). The momenta p will become complex in the analytic
continuation in such a way that p̂µ = pµ/√s will always be real. This condition restricts the
arbitrariness of the analytic continuation, it makes the momentum only ‘minimally complex’
and keeps the representations of the Lorentz subgroup of the Poincaré group P unitary. The
homogeneous Lorentz transformations U(
) are the same as in Wigner’s representations.
We will call this subclass of semigroup representations of P minimally complex
[25, 26].

With (3.19) and (3.20) we have obtained for each resonance defined by the pole of the j th
partial S-matrix at s = sR an ‘exact’ Breit–Wigner (3.19) and associated with it a set of ‘exact’
Gamow kets (3.20). These Gamow kets (3.20) span the space of an irreducible representation
[j, sR] of Poincaré transformations. Thus we have the obtained correspondence (2.13) between
the ‘exact Breit–Wigner’ and ‘exact Gamow vectors’ from their common origin— the first-
order pole of the S-matrix at sRi .

For the association (2.13) of a representation space [j, sR] with a phenomenological
partial wave amplitude ares

j (s), we had used the equality of (1.4) and (3.19) which has a very
special property, namely it is a Cauchy kernel. The definition of the vectors (3.20) would not
have been possible for other arbitrary functions of s (e.g. not for the amplitude aomj (s) of (1.3)).
Even for the Breit–Wigner (1.4) we had to extend the values of s from the phenomenologically
testable values m2

0 � s < ∞ to the negative axis and introduce an idealization, the ‘exact’
Breit–Wigner (3.19) for which s extends over −∞II < s < +∞. Only for the exact Breit–
Wigner (3.19) could we use the Titchmarsh theorem in (3.18) and associate with the amplitude
aBW
j (s) a vector which is defined by this exact Breit–Wigner amplitude. In order to apply

the Titchmarsh theorem we had to restrict the admissible wavefunctions ψ−(s) and φ+(s) to
be Hardy class in the lower half plane. This means we had to require the hypothesis (3.9),
(3.10), or in other words had to require that the in-state vector φ+ and the out-observable
vector ψ− that can appear in the S-matrix element (3.7) and (3.1) be in the spaces Φ− and
Φ+, respectively. Only then could we define the Gamow kets |[j, sR], b−〉 in terms of the
Dirac–Lippmann–Schwinger kets |[j, s], b−〉 by (2.9) as generalized vectors or functionals
over the Hardy class space Φ+. The Gamow vectors cannot be defined as functionals over
the Schwartz space Φ as the usual Dirac kets10. Thus the new hypothesis of (2.5), (2.6) had
to be invoked in order to obtain for every S-matrix pole a Breit–Wigner amplitude (3.19) and
a corresponding Gamow vector (3.20). Each Gamow vector (3.20) by itself has a precise
exponential time evolution as shown by (2.26) and if one could prepare a pure Gamow state,
i.e. isolate theψGsRi associated with the resonance pole at sRi , then the probability for the decay

products would be given precisely by the exponential decay law with the lifetime τRi = h̄
�Ri

.

4. Superposition of Gamow vectors for the jth partial wave and deviations from the
exponential decay law

Each exact Breit–Wigner amplitude aBWi

j (s) of (3.19) was one particular part of the j th partial
S-matrix (3.14), namely the one that was obtained from the pole of Sj (s) at sRi and considered
as a separate entity in section 3. With our mathematical hypothesis of (2.5), (2.6), it was
completely natural to treat each integral around a resonance pole at sRi separately and assign
to each a Breit–Wigner amplitude (3.19) and a corresponding Gamow vector (3.20). In an

10 Similarly, we can define another kind of Gamow ket |[j, s∗R], b+〉 ∈ Φ×− in terms of the Dirac–Lippmann–Schwinger
kets |[j, s], b+〉 for the resonance pole at s∗R = (MR + i�/2)2 in the upper half plane of the second sheet.
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experiment it is not that easy to separate the resonance term(s) from the remainder of the
S-matrix, since the j th partial cross section contains not only the resonance part but also the
non-resonant background of the scattering process in the amplitude aj (s). We now want to
consider the whole S-matrix element (3.11). Inserting (3.17) and the definition (3.12) into
(3.11) we can write the j th partial S-matrix element (ψ−, φ+) as a discrete sum over Gamow
vectors and the background term,

(ψ−, φ+) = 〈ψ−|φbg〉 +
∑
i

〈
ψ−

∣∣s−Ri 〉(2πR(i)/i)〈+sRi
∣∣φ+〉. (4.1)

Omitting the arbitrary ψ− ∈ �+ (the observable) one writes equation (4.1) as a functional
equation in the space�×+ and obtains the following expansion of the prepared in-stateφ+ ∈ �−:

φ+ = φbg +
∑
i

∣∣s−Ri 〉cRi where cRi = (2πR(i)/i)
〈+

sRi
∣∣φ+

〉
. (4.2)

In this way the in-state φ+ has been decomposed into a vector representing the non-resonant
part φbg and a sum over the Gamow vectors each representing a resonance state. The complex
eigenvalue expansion (4.2) is an alternative generalized eigenvector expansion to Dirac’s
eigenvector expansion (2.8), which in this abbreviated notation reads

�− � φ+ =
∫ ∞

0
ds|s+〉〈+s|φ+〉 |s+〉 ∈ �×−. (4.3)

While equation (4.3) expresses the in-stateφ+ in terms of the Lippmann–Schwingerkets |s+〉 ∈
�×−, which are generalized eigenvectors of the mass operator PµPµ with real eigenvalue s,
equation (4.2) is an expansion of φ+ ∈ �×+ in terms of eigenkets

∣∣s−Ri 〉 ∈ �×+ of the same self-

adjoint mass operator PµPµ with complex generalized eigenvalue sRi =
(
MRi − i�Ri

/
2
)2

and the vector φbg of (3.13).
The term φbg is defined by (3.12), (3.13) and is therefore an element of �×+ . We want to

rewrite (3.12) in a more familiar form. According to the van Winter theorem [27], a Hardy
class function on the negative real axis is uniquely determined by its values on the real positive
axis (cf appendix A2 of [28]). Therefore one can use the Mellin transform to rewrite the
integral on the lhs of (3.12) as an integral over the intervalm2

0 � s <∞ and obtain

〈ψ−|φbg〉 =
∫ −∞II

m2
0

ds〈ψ−|s−〉Sj (s)〈+s|φ+〉

=
∫ ∞
m2

0

ds〈ψ−|s−〉bj (s)〈+s|φ+〉 (4.4)

where bj (s) is uniquely defined by the values of Sj (s) on the negative real axis. Without
more specific information about Sj (s), we cannot be certain about the energy dependence of
the background bj (s). If there are no further poles or singularities besides those included in
the sum, then bj (s) is likely to be a slowly varying function of s [29]. Omitting the arbitrary
ψ− ∈ �+ we write the expansion for the non-resonant background part φbg of the prepared
in-state vector φ+ as

|φbg〉 =
∫ ∞
m2

0

ds|s−〉〈+s|φ+〉bj (s). (4.5)

Inserting (4.5) into (4.2) we obtain the complex basis vector expansion of every φ+ ∈ �− as

φ+ =
∑
i

∣∣s−Ri 〉cRi +
∫ ∞
m2

0

ds|s−〉〈+s|φ+〉bj (s)
∣∣s−Ri 〉, |s−〉 ∈ �×+ (4.6)

which is a functional equation over the space �+, cf (4.1).
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The basis vector expansion (4.6) shows that the resonances appear here on the same
footing as the bound states in the usual basis vector expansion for a system with discrete
energy eigenvalues11, with the only difference that the bound states are represented by proper
vectors |En) ∈ H and the Gamow states are represented by generalized vectors,

∣∣s−Ri 〉 ∈ �×+ .
The basis vector expansion (4.6) shows that in addition to the superposition of N Gamow states
there appears an integral (or continuous superposition) over the continuous basis vectors |s−〉
with a weight function b(s)〈+s|φ+〉, where the wavefunction φ+(s) = 〈+s|φ+〉 depends upon
the particular preparation of the state φ+ and will change with the preparation from experiment
to experiment.

In order to study the evolution of φ+ we apply a Poincaré transformationU×(
, x) as in
(2.24) to the functional equation (4.6). For the sake of simplicity we consider the special case
of the time evolution in the rest frame, i.e. we choose∣∣s−Ri 〉 = ∣∣[j, sRi

]
j3p̂ = 0−

〉
and |s−〉 = |[j, s] j3p̂ = 0−〉

(4.7)
with H×|s−〉 = √s|s−〉

and

U×(
, x) = U×(
 = 1, x = (t, 0, 0, 0)) = e−iH×t . (4.8)

Then we obtain for the time evolution of the state φ+ ∈ �− ⊂ �×+

φ+(t) = e−iH×tφ+ =
N∑
i=1

e−iMRi
t e−�Ri /2t

∣∣sRi 〉 +
∫ ∞
m2

0

e−i
√

st |s−〉〈+s|φ+〉b(s) for t � 0

(4.9)

where we have used (4.7) and (2.26). The result (4.9) shows that the time evolution of a state
φ+ prepared by an apparatus is given by a superposition of exponentials plus a non-exponential
background integral.

The complex basis vector expansion (4.6) is an exact consequence of the new hypothesis
(2.6), (2.7). In the heuristic treatment of the decay phenomena by a complex effective
Hamiltonian based on the Weisskopf–Wigner approximation [30] like the Lee–Oehme–Yang
theory of the neutral Kaon system [32], or the effective theories with finite-dimensional
complex Hamiltonian matrices in nuclear physics [33], one always ignores the continuum
terms. These theories correspond to (4.6) with the background integral omitted:

φ+ ≈
∑∣∣s−Ri 〉ci = |KS〉cS + |KL〉cL. (4.10)

On the far right of (4.10) we used the standard notation for the K0-state expressed in terms
of the KL- and KS-states which are the eigenstates of the complex Hamiltonian matrix with
complex energy (ML − i�L/2) and (MS − i�S/2), respectively. In this case the probability
for the decay products π+π− described by ψ− = |π+π−〉 is obtained from (4.9) as

|〈ψ−|φ+(t)〉|2 = |cS|2 e−�St |〈ψ−|KS〉|2 + |cL|2 e−�Lt |〈ψ−|KL〉|2
+ 2|cL · cS| e− 1

2 (�S+�L)t |〈ψ−|KS〉〈ψ−|KL〉| cos ((MS −ML)t + α). (4.11)

In comparison to the decay probability rate (2.27) for the Gamow vectors, the decay
rate for the superposition (4.10) shows deviations from the exponential decay law due to
the KS − KL interference terms of (4.11). These deviations from the exponential due to the
interference of two exponentially decaying states are well known and well accepted. However,
11 We have assumed as in (4.3) that there are no bound states of H. Otherwise one would have in addition
to the rhs of (4.3) and (4.6) the discrete sum over the bound states, which is orthogonal to the rest φ =∑
n |En)(En|φ) +

∫∞
0 dE|E〉〈E|φ〉.
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even if there is only one resonance in the j th partial wave then the exact complex basis vector
expansion (4.6) is given by

φ+ = ψG +
∫

ds|s−〉〈+s|φ+〉b(s) = ψG + φBG. (4.12)

Here ψG is the Gamow vector with the exponential time evolution (2.26) and the prepared
in-state φ+ thus has the time evolution

φ+(t) = e−iH×tφ+ = e−imRt e−�R/2tψG +
∫ ∞
m2

0

e−i
√

st |s−〉〈+s|φ+〉b(s) (4.13)

which predicts deviations from the exponential law due to the complicated time dependence
of the background vector at time t:

φbg(t) =
∫ ∞
m2

0

e−i
√

st |s−〉〈+s|φ+〉b(s). (4.14)

Only the Gamow vector, which corresponds by (2.13) to the exact Breit–Wigner amplitude
and represents the resonance per se, has a purely exponential decay (2.26). The time evolution
of the first term in (4.13) is in every experiment given by the same exponential, which is
for the particular decaying Gamow state characterized by two numbers (MR,�R) only. The
time evolution of the second term of (4.13)—and also of the interference term of ψG(t) and
φbg(t)—depends upon the preparation of the state φ+ and changes thus from experiment to
experiment. The smaller one can make the experimentally controllable quantity |〈+s|φ+〉|,
the less important will be the deviations from the experimental law. In some experiments,
using a suitable analysis that separates the interference term, the validity of the exponential
law has been established to a high degree of accuracy [34]. If one takes the hypothesis that
the experimentally prepared state must be φ+ ∈ �− (and cannot be ψG ∈ �×+ ), then there
must always be a φbg in φ+ of (4.12) even though φ+ may come arbitrarily close (with respect
to the definition of convergence in the space �×+ ,�− ⊂ �×+ ) to an exponentially decaying
generalized state ψG [35]12. In resonance scattering experiments of hadrons, in which the
timescale for the preparation of the decaying state and the timescale for the decay are the
same (≈10−23 s), one knows from experiments that one always needs the slowly varying
background term Bj (s) in the scattering amplitude (1.2) for the fit of the cross-section data.
Therefore one expects deviations from the exponential decay law due to 〈+s|φ+〉b(s) in (4.14),
since b(s) corresponds to the background amplitude Bj (s), as we shall show below. This
background term can also account for the first (and the only one reported so far) experimental
observation of deviations from the exponential law [36]. It is thus our complex basis vector
expansion (4.6) based on the new hypothesis (2.5), (2.6) that explains the deviations from the
exponential law and relates it to the background in a resonance scattering experiment. Though
the resonance per se described by a Gamow vector has an exponential time evolution, the
complex basis vector expansion predicts deviations from the exponential law for the prepared
state if the background cannot be separated from the resonance per se.

12 The historical origin of the much discussed deviations from the time-honoured exponential decay law is a theorem
of Hilbert space mathematics using the specific topological properties of the Hilbert space, namely completion. One
proves the theorem that the survival probability and thus the partial decay rate Ṗη(t) (which is measured as the counting
rate Ṅη(t)) for every state described by h ∈ H cannot be exponential (cf [35]). Since our in-state φ+ ∈ �− ⊂ H
is also an element of H and thus cannot have an exponential time evolution this is expressed by the background in
(4.13). In practical calculations one uses many concepts, such as the Lippmann–Schwinger kets, that lie outside the
Hilbert space, and so does the Gamow vector. The theorem from Hilbert space mathematics is no reason why the
vector which describes the resonance per se needs to be an element of H and, therefore, need not have deviations
from the exponential decay law.
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The experimental ingenuity in establishing the exponential decay law for each Gamow
state is to suppress or exclude by analysis as much as possible the effect of this background
and the effect of the other interfering Gamow vectors.

We now want to establish the correspondence between the terms in the complex basis
vector expansion (4.6) and terms in the scattering amplitude. For this purpose we rewrite
(3.11) in a different form. In place of (ψ−, φ+) on the lhs of (3.11), we write the rhs of (3.8),
and on the rhs of (3.11) we use (3.18) and (4.4). Then we obtain∫ ∞
m2

0

ds〈ψ−|s−〉Sj (s)〈+s|φ+〉 =
∫ ∞
m2

0

ds〈ψ−|s−〉bj (s)〈+s|φ+〉

+
∑
i

∫ +∞

−∞II

ds〈ψ−|s−〉〈+s|φ+〉 R
(i)

s− sRi
. (4.15)

This equality holds for the whole space of functions 〈ψ−|s−〉〈+s|φ+〉 ∈ �−. Therefore
we can omit these arbitrary energy wavefunctions

〈ψ−|s−〉〈+s|φ+〉 = 〈ψout|s〉〈s|φin〉 ∈ �− (4.16)

which describe the resolution of the preparation apparatus and of the registration apparatus
and write equation (4.15) as an equation between distributions over the function space �−:

θ
(
s−m2

0

)
Sj (s) = θ

(
s−m2

0

)
bj (s) +

∑
i

R(i)

s− sRi
. (4.17)

Though one likes to represent the ‘physics’ in this apparatus-independent way, what one
measures in each experiment contains of course always the convolution with an apparatus
resolution so that (4.17) really means (4.15) in its applications to a particular experiment.
A corresponding equation can be written for the partial wave amplitudes (3.6) (by dividing
(4.17) by 2i and subtracting 1 on both sides for n = n′)

θ
(
s−m2

0

)
aj (s) = θ

(
s−m2

0

)
Bj(s) +

∑
i

R̃(i)

s− sRi
(4.18)

considered as a functional equation in the space of distributions �×−. Here Bj (s) as bj (s)
describes an ever present slowly varying non-resonant background. For instance, if there is
only one resonance pole at sR in the j th partial wave, then the cross section contains in addition
to the resonance part (Breit–Wigner) also the background amplitude and the interference term
between them:

|aj(s)|2 =
∣∣∣∣Bj (s) +

R̃(i)

s− sRi

∣∣∣∣
2

= ∣∣Bj (s) + ares
j (s)

∣∣2. (4.19)

This shows that it is difficult to distinguish phenomenologically between two alternative
functions for the resonance part of the amplitude such as (1.3) and (1.4). The formula (4.19),
or the formula (4.18) for a single resonance, is one of the frequently used phenomenological
formulae. This formula has been derived here from the hypothesis (2.5), (2.6) but it also has a
theoretical justification under the usual analyticity assumption for the S-matrix Sj (s) (Laurent
expansion).

For two (or more) resonances we have also derived (4.17), but we needed for its derivation
the Hardy class hypothesis (3.9), (3.10) to obtain (3.18) for each pole term separately. The
amplitude (4.17), (4.18) represents the superposition of interfering Breit–Wigner resonances
plus a background. The formula (4.17) cannot be derived using the usual analyticity assumption
of Sj (s) only [9]. The interference of resonances as predicted by (4.17), (4.18) has been
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established experimentally for the non-relativistic case in nuclear physics [31]13 and for the
relativistic case in the ρ–ω interference [10]. Since its derivation required the assumption
ψ− ∈ Φ+ and φ+ ∈ Φ−, the phenomenological success of formulae such as (4.17) for two
interfering resonances is another argument in favour of our new hypothesis of (2.5), (2.6).

With (4.17) and (4.6) we have now established a term-by-term correspondence between the
complex eigenvalue resolution (4.6) of the prepared in-state vector φ+ and the representation
(4.18) for the partial wave amplitude (or also (4.17) for the S-matrix). To each Breit–Wigner
in (4.18) corresponds a Gamow vector in (4.2) or (4.6) and to the background amplitudeBj (s)
in (4.18) corresponds the vector φbg . This establishes a unique correspondence between the
vector description of quasistable particles and the S-matrix description of resonances. The
vector description is used for instance in the effective theories with complex Hamiltonian
matrix (such as the Lee–Oehme–Yang theory of K0

S and K0
L [32] or the finite-dimensional

models of nuclear physics [31, 33]), only these finite-dimensional models omit the background
vectors φbg (4.5) which span an infinite-dimensional energy continuum. This omission of the
energy continuum is a typical feature of the Weisskopf–Wigner approximations. In the
S-matrix description of the resonance by the phenomenological ansatz (1.2) one usually does
not omit the background amplitude B(s), but often includes in B(s) also the contribution of a
second distant resonance which according to our prediction (4.18) belongs to the sum of the
Breit–Wigner amplitude. The correspondence between (4.18) and (4.6) unifies the theory of
resonance scattering and the theory of particle decay.

5. Summary and conclusion

In this paper a relativistic theory that unifies resonance phenomena and decay phenomena
has been presented. The centrepiece of this theory is the relativistic Gamow vector which is
defined as the vector with an ‘ideal’ Breit–Wigner energy wavefunction. Each Gamow vector
is obtained from a resonance pole, in the second sheet of the analytically continued relativistic
S-matrix at sR = (MR − i�R/2)2 (figure 1), where MR is the resonance mass and �R is the
width of the resonance part (1.4) of the scattering amplitude.

A vector of this kind does not exist in the Hilbert space. To accommodate it, the Hilbert
space axiom of quantum theory had to be replaced by a new hypothesis which distinguishes
meticulously between prepared in-states and detected out-observables by associating them
with different Hardy spaces (2.5) and (2.6) which are dense in the same Hilbert space. The
Gamow states are represented by elements in the space of continuous antilinear functionals on
the Hardy space. A consequence of this new hypothesis is that the quantum theory of scattering
and decay is time asymmetric (expressing irreversibility on the microphysical level), and the
time evolution of the Gamow vectors is given by a semigroup, 0 < t < ∞, where t = 0 is
the time at which the Gamow state was created, and at which the registration of the decay
products can begin. For each decay event at ti , there is a time ti0 at which the decaying state
was created and we associate each ti0 with the mathematical semigroup time t = 0.

The relativistic Gamow kets (2.9) are the basis vectors of a semigroup representation of
the causal Poincaré transformations (2.15) characterized by [j, sR] representing spin j of the
resonating partial wave and complex pole position sR . In order to retain as much similarity
as possible with Wigner’s unitary representations of the Poincaré group for stable particles
[j,m2] and to maintain the meaning of spin j of a resonance, only semigroup representations
with minimally complex momentum are considered, which means that the momentum is given
by p = √sRp̂, where the four-velocities p̂0 = γ = √1− v2, p̂ = γ v are real. The general

13 This paper and also [32] use the finite complex effective Hamiltonian omitting the background φbg and/or bj (s).
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transformation formula of the relativistic Gamow kets under causal Poincaré transformations
is given by (2.24) which looks very similar to Wigner’s unitary Poincaré group transformation,
but differs by the property that transformations are allowed only into the forward light cone.
(A surprising side result is that also the in- and out-plane wave solutions of the Lippmann–
Schwinger equation, when given a proper mathematical meaning as functionals on linear
topological spaces, support only a semigroup representation of Poincaré transformations and
not a unitary representation of the Poincaré group as has been universally assumed, cf e.g. [13].
The reason for this is the infinitesimal imaginary part ∓iε in the energy of the Lippmann–
Schwinger kets expressing time asymmetric boundary conditions.) For the case of an isolated
Gamow resonance state at rest, (2.24) gives the exponential time evolution (2.26) which leads
to the exponential decay probability (2.27) with lifetime τR = h̄/�R .

The prepared in-state φ+ is in general not given by a Gamow vector but is a linear
superposition of Gamow vectors for all the N resonance poles of the j th partial S-matrix Sj (s)
and in addition there is a background vector so that the prepared state is given by the complex
basis vector expansion (4.2) or (4.6), where the sum over i extends over all N resonance poles
of the j th partial wave. This is very similar to the heuristic expansion in terms of eigenstates
with complex eigenvalues

(
Mi − �Ri

2

)
of a finite-dimensional effective Hamiltonian, such as

the K0-state in (4.10). However, our exact complex basis vector expansion has in addition
to the superposition of states with definite lifetime τi , also a background vector (4.5)
over the energy continuum, which is always lost in the Weisskopf–Wigner approximation.
As the consequence of this background term, which corresponds to the slowly varying
background amplitude of the scattering amplitude (1.2), one always obtains deviations from
the exponential decay law for the prepared state φ+. This explains that in spite of the
exponential time evolution for the Gamow state, describing the resonance per se, one can
observe deviations from the exponential law even if there is only one resonance present.
Whereas the resonance per se, which does not depend upon the experiment that prepares the
state, is characterized by (MR,�R) and has exponential evolution with lifetime τR = 1/�R ,
the prepared state can change from experiment to experiment and so would the deviation
from the exponential decay law. Eliminating the background in the analysis of the decay data
for each particular experiment should reveal the exponential character of the decay.
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Appendix. Rigged Hilbert spaces

Rigged Hilbert spaces (RHS), also called Gelfand triplets, are triplets of linear spaces, which
differ from each other by their topology. In other words the meaning of convergence is different
for each space, which implies that the limit points of converging sequences are different in
the three spaces that make up the Gelfand triplet. The three spaces have properties which a
physicist would call a Hilbert space but only one of them is a Hilbert space by the mathematical
definition, i.e. it is complete with respect to the Hilbert space convergence.
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One starts with a linear scalar product space denoted by �alg (also called a pre-Hilbert
space). The subscript (alg) refers to the algebraic operations that one can perform in it, namely
linear superpositions and the scalar product. The three spaces that form the RHS, denoted by

� ⊂ H ⊂ �× (A.1)

are obtained by completing the purely algebraic space �alg with respect to three different
topologies, i.e. three definitions of convergence. To obtain each space, one adjoins to �alg

the limit elements of Cauchy sequences, but one uses three different meanings of convergence
and thus obtains three different complete spaces. The space with a stronger topology, i.e. a
stronger definition of convergence, is dense in the space with a weaker topology. The Hilbert
space H is obtained by completing �alg with respect to the norm, denoted by τH. The space
� is obtained by completing�alg with respect to a stronger topology than τH, denoted by τ�.
The third space �× is the space of continuous antilinear functionals F on�

|F 〉 : φ ∈ �→ F(φ) = 〈φ|F 〉 ∈ C. (A.2)

Thus one obtains the triplet of spaces, or a rigged Hilbert space (A.1).
In the Hilbert space, there is a one-to-one correspondence between elements of the space

of antilinear functionals H× and elements of H, thus one can identify them with each other:

H = H×. (A.3)

According to the Frechet–Riesz theorem, for every |f 〉 ∈ H× there is an f ∈ H such that
f (φ) = 〈φ|f 〉 = (φ, f ) for all φ ∈ H. The functional 〈φ|F 〉 is an extension of the scalar
product (φ, f ) to those |F 〉 ∈ �× which are not in H.

Let A be a linear operator in �, continuous with respect to τ�, and A† its adjoint in H.
To the triplet of spaces (A.1) corresponds to a triplet of operators

A : A†|� ⊂ A† ⊂ A× (A.4)

where A† is the Hilbert space adjoint of A and A†|� its restriction to �. If A is a continuous
operator with respect to τ�, it need not be, and in general is not, a continuous (bounded)
operator in H. We shall only consider τ�-continuous operators. So far the restriction to
continuous operators in � has proved to be sufficient for quantum physics, whereas τH-
continuous operators are not sufficient (e.g. the position and/or momentum operators cannot
be continuous operators in H, neither can the generators of unitary representations of non-
compact groups).

The conjugate operator,A×, of the τ�-continuous linear operatorA is a continuous linear
operator in �× defined by

〈Aφ|F 〉 = 〈φ|A×|F 〉 ∀φ ∈ � and ∀F ∈ �×. (A.5)

It is a unique extension of the Hilbert space adjoint operator

(Aφ, f ) = (φ,A†f ) for φ, f ∈ H. (A.6)

A vector F ∈ �× is called a generalized eigenvector of the τ�-continuous operator A if
for some ω ∈ C

〈Aφ|F 〉 = 〈φ|A×|F 〉 = ω〈φ|F 〉. (A.7)

This is also written as A×|F 〉 = ω|F 〉, or as Dirac did, A|F 〉 = ω|F 〉 for Hermitian A.
An example of generalized eigenvectors is the Dirac kets. Their eigenvalues belong to the
continuous spectrum of a self-adjoint H, H×|E〉 = E|E〉, 0 � E <∞.

Kets (and all F ∈ �×) depend on the choice of the space�. Dirac kets are usually defined
with � as the Schwartz space S, i.e. the space of smooth, rapidly decreasing wavefunctions
φ(E) = 〈E|φ〉.
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The triplet of function spaces

S ⊂ L2 ⊂ S× (A.8)

where S is the space of smooth, rapidly decreasing functions and L2 is the space of Lebesgue
square-integrable functions with scalar product given by the integral

(ψ, φ) =
∫ ∞
−∞

dEψ(E)φ(E) =
∫ ∞
−∞

dE〈ψ|E〉〈E|φ〉 (A.9)

is an example of a RHS. It is called a realization of the abstract Schwartz-RHS

� ⊂ H ⊂ �× (A.10)

whose vectors ψ,φ ∈ � are the vectors for which the Dirac basis vector expansion

φ =
∫ ∞
−∞

dE|E〉〈E|φ〉 (A.11)

(omitting the arbitrary ψ ∈ � from (A.9)) holds.
The integrals in (A.9) can always be chosen as Riemann integrals if ψ,φ ∈ �, i.e.

ψ(E), φ(E) ∈ S and we shall do so. The integral for the scalar product in L2, however, must
be a Lebesgue integral since the space of Riemann square-integrable functions cannot be a
complete Hilbert space.

The space � that together with H forms an RHS cannot be an arbitrary topological
space. The topology τ� must fulfil certain additional conditions (e.g. nuclearity) in order
that Dirac’s basis vector expansion (A.11) can be proved as the nuclear spectral theorem.
These additional requirements on � are part of the definition of every RHS (A.1). The Dirac
basis vector expansion (A.11) is the most important theorem for quantum mechanics; even
before its proof, it had been used profusely in quantum theory. In this paper it appears in
(2.2)–(2.7).

Examples of other RHS besides the Schwartz-RHS (A.8) are the Hardy-RHS. There are
two Hardy-RHS, denoted by

�+ ⊂ H ⊂ �×+ (A.12)

�− ⊂ H ⊂ �×− (A.13)

and realized by the function spaces

H2
+ ∩ S|R+ ⊂ L2(R+) ⊂

(
H2

+ ∩ S|R+

)×
(A.14)

H2
− ∩ S|R+ ⊂ L2(R+) ⊂

(
H2
− ∩ S|R+

)×
(A.15)

respectively.
Here the Hilbert space, L2(R+), is the space of Lebesgue square-integrable functions on

the positive real line R+, and H2
± ∩ S|R+ denotes the smooth, rapidly decreasing functions

ψ±(E),E ∈ R+, which can be analytically continued into the upper half (for H2
+) and the

lower half (for H2
−) complex energy planes. More precisely, the ψ∓(E) ∈ H2

± ∩ S|R+ are
the boundary values of smooth analytic functions in the lower (−) and upper (+) complex
half planes that decrease sufficiently fast at the infinite semicircle (for the definition see the
appendix of [38]). We call the spaces �± and their realization H2

± ∩ S|R+ Hardy spaces. One
can show that these function spaces (A.14), (A.15), also form an RHS [19]. The Hardy-RHS
are needed if one wants to consider generalized eigenvectors of the Hamiltonian H belonging
to the continuous spectrum

H×|E±〉 = E|E±〉 0 � E <∞ (A.16)
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and fulfilling outgoing (−) and incoming (+) boundary conditions (e.g. the solutions of the
Lippmann–Schwinger equations). For these generalized eigenvectors, we have |E±〉 ∈ �×∓
but |E±〉 are not elements of the dual of the Schwartz space �×. There are many other
examples of generalized vectors that are in �×± and not in �×. For example, the generalized
eigenvectors of the self-adjoint Hamiltonian H with complex eigenvalue, the Gamow vectors

H×|ER − i�/2−〉 = (ER − i�/2)|ER − i�/2−〉 (A.17)

are elements of�×±, but not elements in �×.
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[25] Bohm A, Kaldass H, Wickramasekara S and Kielanowski P 2000 Phys. Lett. A 264 425
[26] Bohm A, Wickramasekara S and Kaldass H 1999 Relativistic Gamow vectors: I. Derivation from poles of the

S-matrix Preprint The University of Texas at Austin
Wickramasekara S and Bohm A 1999 Relativistic Gamow vectors: II. The rigged Hilbert space Preprint The

University of Texas at Austin
Bohm A, Wickramasekara S and Kaldass H 1999 Relativistic Gamow vectors: III. Transformation under the
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